Q1: Find i_{L} (in micro amperes) in the circuit in Fig.1

Q2: The op-amp in the circuit in Fig.2 is ideal. Calculate the following: v_1 , v_0 , i_2 and i_0

Fig.1

Q3: The op-amp in Fig.3 is ideal.

A) What circuit configuration is shown in this figure? B) Find v_o if $v_a=1V v_b=1.5v$ and $v_c=-4v$.

c) The voltages v_a and v_c remain at 1Vand - 4V, Respectively. What are the limits on v_b if the op-amp operates within its linear region?

Q4: The op-amp in Fig.4 is ideal.

A) Calculate v_o when v_g equals 4V.

b) Specify the range of values of v_g so that the op-amp operate in linear region.

c) Assume that v_g equals 2V and that the 63k Resistor replaced with variable what is its value to saturate the op-amp?

Fig.3

Fig.4

Q5: The circuit in Fig.5 is an non inverting summing amplifier. Assume the op-amp is ideal. Design the Circuit so that $V_o = V_a + 2V_b + 3V_c$ **a)** Specify the numerical values of R_a and R_c . **b)** Calculate i_a , i_b , and i_c (in micro amperes) when $v_a = 0.7V$, $v_b = 0.4V$, and $v_c = 1$. 1V.

Q6: The op-amp in the circuit of Fig.6 is ideal.

a) Plot v_o versus α when $R_f = 4R_1$ and $v_g = 2V$. Use increments of 0.1 and note by hypothesis that O< α <1.0. b) Write an equation for the straight line you plotted in(a). How are the slope and intercept of the line related to v_g and the ratio R_f/R_i ?

c) Using the results from(b), choose values for v_g and the ratio R_f/R_1 such that v_o =-6 α +4.

Q7: The voltage v_g shown in Fig.7 (a) is applied to the Inverting amplifier shown in Fig.7 (b). Sketch v_o versus t, assuming the op-amp is ideal.

Fig.7

Q8: The op-amps in the circuit in Fig.8 are ideal .

a) Find i_a .

b) Find the value of the left source voltage for which i_a =0.

Fig.8