Sohag University
Faculty of Engineering

Electric Circuits Theory (2)
Second Year
SHEET NO 1

Q1: Find i_{L} (in micro amperes) in the circuit in Fig. 1
Q2: The op-amp in the circuit in Fig. 2 is ideal. Calculate the following: $\mathrm{v}_{1}, \mathrm{v}_{\mathrm{o}}, \mathrm{i}_{2}$ and i_{o}

Fig. 1
Q3: The op-amp in Fig. 3 is ideal.
A) What circuit configuration is shown in this figure?
B) Find v_{o} if $v_{a}=1 V v_{b}=1.5 v$ and $v_{c}=-4 v$.
c) The voltages v_{a} and v_{c} remain at 1 Vand $-4 V$,

Respectively. What are the limits on v_{b} if the op-amp operates within its linear region?

Fig. 2
Q4: The op-amp in Fig. 4 is ideal.
A) Calculate v_{o} when v_{g} equals $4 V$.
b) Specify the range of values of v_{g} so that the op-amp operate in linear region.
c) Assume that v_{g} equals 2 V and that the 63 k Resistor replaced with variable what is its value to saturate the op-amp?

Fig. 3

Fig. 4

Q5: The circuit in Fig. 5 is an non inverting summing amplifier. Assume the op-amp is ideal. Design the Circuit so that $V_{o}=V_{a}+2 V_{b}+3 V_{c}$ a) Specify the numerical values of R_{a} and R_{c}. b) Calculate i_{a}, i_{b}, and i_{c} (in micro amperes) when $\mathrm{v}_{\mathrm{a}}=0.7 \mathrm{~V}, \mathrm{v}_{\mathrm{b}}=0.4 \mathrm{~V}$, and $\mathrm{v}_{\mathrm{c}}=1.1 \mathrm{~V}$.

Fig. 5

Q6: The op-amp in the circuit of Fig. 6 is ideal.
a) Plot v_{o} versus α when $R_{f}=4 R_{1}$ and $v_{g}=2 V$. Use increments of 0.1 and note by hypothesis that $0<\alpha<1.0$.
b) Write an equation for the straight line you plotted in(a).How are the slope and intercept of the line related to v_{g} and the ratio R_{f} / R_{i} ?
c) Using the results from(b), choose values for v_{g} and the ratio R_{f} / R_{1} such that $v_{o}=-6 \alpha+4$.

Q7 : The voltage v_{g} shown in Fig. 7 (a) is applied to the Inverting amplifier shown in Fig. 7 (b). Sketch v_{o} versus t, assuming the op-amp is ideal.

Fig. 7
Q8: The op-amps in the circuit in Fig. 8 are ideal .
a) Find i_{a}.
b) Find the value of the left source voltage for which $i_{a}=0$.

Fig. 8

